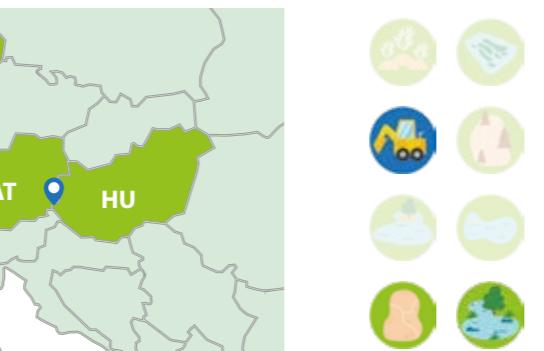


ALFAwetlands Living Labs


Wetlands have a remarkable capacity to store carbon. Globally, the estimated carbon storage of wetlands is 225 billion tons whilst covering just 5-8% of the world's terrestrial area. The restoration of degraded wetlands provides nature-based solutions to decrease emissions of greenhouse gases (GHG) and to increase carbon storage in the soil. Furthermore, restoration of wetlands positively impacts biodiversity and various ecosystem services. The ALFAwetlands project applies a research concept with so-called Living Labs.

Within the project, there are nine different Living Labs, representing a variety of European wetlands: from peatlands to coastal wetlands. Living Labs are located in Belgium, Germany, Estonia, Finland, France, Latvia, Spain, Sweden as well as on both sides of the Austrian-Hungarian border. Living Labs are platforms for collaboration, they involve partners from different backgrounds, and are usually composed of several sites, where ecological and social science work and modelling are conducted.

They have a key role in supporting and integrating interdisciplinary research on ecological, environmental, economic, and social science at the local level. The research conducted on the Living Labs is contributing to the implementation of the EU Water Framework directive, EU Nature Directives, and to meeting restoration targets of the Nature Restoration Law.

Living Lab Austria - Hungary

Site: Fertö/Neusiedl Lake, Hungary & Neusiedler See-Seewinkel National Park, Austria

Challenges: Economic use, management and nature conservation, climate change: reed belt dieback, production and emission of methane, water level fluctuations, tourism pressure. Reed cutting partially restricted and concentrated on peripheral areas due to warmer winters.

Restoration method: Restoration efforts include mowing and grazing of reed edge areas, testing fire management as a potential tool, and comparing different areas to evaluate effectiveness. Additionally, channels in the reed belt are being reopened to improve water flow and support ecosystem restoration.

Stakeholder involvement: Stakeholders will be involved in a fire management experiment with the aim of adapting the legal framework accordingly. If successful, the fire management legislation can be changed. Stakeholders are also involved into citizen science: biodiversity monitoring, bioblitz campaign; participation in Living Lab Open Days as well as in PP-GIS surveys. Landowners will also be invited to join a survey on restoration costs.

Expected impacts: In the long-term: restoration of floodplain, preservation of biodiversity, better water quality.

Contact person: Iryna Shchoka, iryna.shchoka@wilderness-society.org

© A. Cimadom

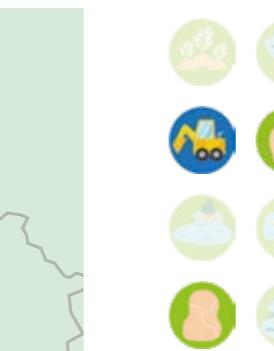
Living Lab Belgium

Sites: Valley of the Zuidleie, Zwarte Beek, Dijle River Valley

Challenges: High nutrient load of flooding water and sediment deposits alter the ecosystem. Eutrophication in infiltration zones and drainage structures downstream alters water quality and quantity. Unfavourable hydrologic conditions due to extreme weather events.

Restoration method: Ecological restoration. Here partners are working to restore drained wetlands by blocking or filling ditches and rewetting them. In the center of the area, there is an artificial wetland developed to clean drainage water from nitrate pollution.

Stakeholder involvement: Guided field trips, for example, to the National Park.


Expected impacts: Rewetting will decrease GHG emissions, increase biodiversity, support recreation.

Contact person: Tom De Dobbelaer, tom.dedobbelaer@inbo.be

© K. Decleer

Living Lab Estonia

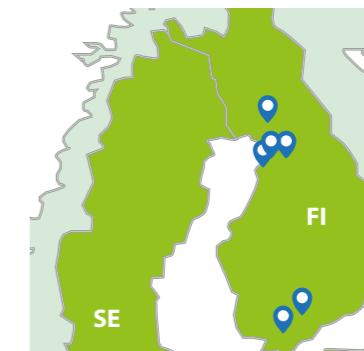
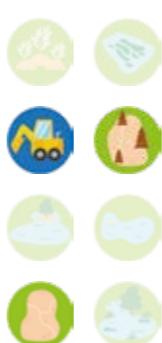
Sites: Vända, Laiuse, Ess-soo, Kuresoo

Challenges: 70% of Estonian peatlands are drained. Former peat extraction areas are under consideration for site restoration.

Restoration method: Ecological restoration.

Here partners are working to restore drained wetlands by blocking or filling ditches and rewetting them. In the center of the area, there is an artificial wetland developed to clean drainage water from nitrate pollution.

Stakeholder involvement: At Sanginjoki co-creation workshops on peatland restoration and Living Lab Open Days are planned. A PP-GIS survey on the



recreational use of wetlands and citizens' willingness to pay for restoration activities will be conducted in the extended Sanginjoki region. A landowner survey on compensation expectations for restoration and policymakers' data needs, focusing on the country level.

Contact person: Kaido Soosaar, kaido.soosaar@ut.ee

© T. Schindler

Living Lab Finland

Sites: Lettosuo, Kivalo, Rottasniitunsuo, Sanginjoki, Siikajoki

Challenges: Almost 50% of Finnish peatlands have been drained for forestry. Drained peatland forests are a net carbon sink due to their tree growth while their soils are a carbon source.

Restoration method: 1) Continuous Cover Forestry (CCF): regulates water level, 2) ecological restoration: rewetting.

Stakeholder involvement: At Sanginjoki co-creation workshops on peatland restoration and Living Lab Open Days are planned. A PP-GIS survey on the

recreational use of wetlands and citizens' willingness to pay for restoration activities will be conducted in the extended Sanginjoki region. A landowner survey on compensation expectations for restoration and policymakers' data needs, focusing on the country level.

Expected impacts: CCF: Decrease in GHG emissions (through slower peat decomposition), decrease in leaching of nutrients into recipient waterbodies, increase in biodiversity, incomes continue, no negative effects on recreational activities.

Restoration method: Decrease in GHG emissions (through slower peat decomposition), increase in leaching of nutrients into recipient waterbodies (first years after rewetting), increase in biodiversity and return of the open peatland environment with functioning carbon sequestration.

Negative effect on future incomes, may have negative effect on recreational activities in first years after rewetting, but positive in long-term.

Contact persons: Liisa Ukonmaanaho, liisa.ukonmaanaho@luke.fi; for Rottasniitunsuo site Annalea Lohila, annalea.lohila@fmi.fi

© M. Kurki and Luke

Living Lab France

Sites: Béardouze-Péyréé, Confluent-to-lousie, Ratapillor, Anceur catchment

Challenges: The subsurface drainage and reclamation of peatlands during the last century contributed to 70% decrease in wetlands area. Increase in agricultural nitrate pollution, flooding due to higher winter precipitation, and rising temperatures in high altitude peatlands are the main challenges tackled by the Living Lab France.

Restoration method: The Living Lab in France includes artificial wetland, built in a former cultivated area, and natural restoration sites in riparian forest areas, which is continuously monitored, as well as the restoration of a mountain peatland with traditional pasture and forestry practices.

Stakeholder involvement: Co-creation process involving farmers, water managers, National Natural Reserve, National Forest Office.

Expected impacts: It is planned to restore biodiversity loss to its natural ecological trajectory, mitigate the emission of GHG (CO₂, CH₄, N₂O), improve water quality and organic matter input and retention, as well as foster cultural and educational aspects of re-creation activities through the preservation of biodiversity.

Contact persons: José-Miguel Sánchez-Férez for Péyréé, Confluent-to-lousie, Ariège-Garonne-Tourouze, jose-miguel.sanchez-ferrez@cnrs.fr; Julien Tournebize for Ratapillor, Ariège-Tournebize, julien.tournebize@cnrs.fr

© CNRS